A New Neurofuzzy Network for Selforganizing Control

نویسنده

  • Nicolae Constantin
چکیده

In this paper a novel neural fuzzy inference network (NFIN) it is proposed. The NFIN represent a modified Takagi-Sugeno-Kang (TSK) type fuzzy rule based model with neural network learning ability. The rules in the NFIN are created and adapted in an on-line learning algorithm. The structure learning together with the parameter learning forms the learning algorithms for the neural fuzzy network. It is proved that NFIN can greatly reduce the training time, avoid the overtuned phenomenon and has perfect regulation ability. Copyright © 2002 IFAC

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-Organizing Hybrid Neurofuzzy Networks

We introduce a concept of self-organizing Hybrid Neurofuzzy Networks (HNFN), a hybrid modeling architecture combining neurofuzzy (NF) and polynomial neural networks(PNN). The development of the Self-organizing HNFN dwells on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The architecture of the Self-organizing HNFN results from a...

متن کامل

Model-Reference Adaptive Control using Associate Memory Network

Model-reference adaptive control with neurofuzzy methodology is derived in this paper. Associate memory network(AMN) is investigated in detail to be the possible implementation as the direct self-tuning nonlinear controller. The essence of the neurofuzzy controller has been discussed and the local stability of the system is reached. The performance of the model-reference adaptive neurofuzzy con...

متن کامل

Neuro-fuzzy Network Based Adaptive Integrating Cotnrol

A self-tuning neurofuzzy integrating controller is derived in this paper for offset eliminating purpose. CARIMA plant model is used and the control law produces integral control terms in a natural way. Neurofuzzy networks are chosen to implement the direct self-tuning nonlinear integrating controller. The performance of the self-tuning integrating neurofuzzy controller is illustrated by example...

متن کامل

Traffic Control in Unicast ATM ABR Service using Adaptive Approach

This paper addresses the problem of rate control for Available Bit Rate (ABR) service class in Asynchronous Transfer Mode (ATM) networks. An adaptive neurofuzzy mechanism based on Adaptive Network Fuzzy Inference System (ANFIS) for allocating rates in ABR service has been proposed and compared with the fuzzy technique called as Fuzzy Explicit Rate Marking (FERM). To achieve this, a neurofuzzy A...

متن کامل

Neurofuzzy Modelling

A neural network can approximate a function, but it is impossible to interpret the result in terms of natural language. The fusion of neural networks and fuzzy logic in neurofuzzy models provide learning as well as readability. Control engineers find this useful, because the models can be interpreted and supplemented by process operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002